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Abstract—Dircct boundary element formulations are presented for the elastostatic analysis of two-
and three-dimensional general anisotropic media subject to known temperature distributions. The
thermal effects are incorporated in the analysis through a volume integral or alternatively, using
particular integrals. A multi-region boundary element approach is adopted, in which particular
integrals are derived assuming a quadratic temperature distribution in cach sub-region. A multiple
regression scheme is used for the best fit quadratic temperature distribution in each sub-region for
temperature data given at discrete points. The multi-region analysis capability of the numerical
implementation enhances its capacity to maodel discontinuous temperature ficlds as well as piccewise
homogencous media, such as kiminated composites. The formulations presented are incorporated
in a penerad purpose system and are illustrated with examples.

INTRODUCTION

In the most commonly applicd uncoupled quasistatic thermoclastic theory, the spatial
derivatives of temperature enter the Navier equations of clastostatics with the same effect
of an applied body foree field. In the context of the conventional direet boundary element
formulation, this thermal body foree amounts to an additional volume integral (Rizzo and
Shippy, 1977). In an alternative approach, the boundary clement formulation is stated in
terms of complementary solutions of the Navier equations by choosing arbitrary particular
integrals, and the above-stated volume integrals warranting volume (domain) discretization
can be avoided (Henry and Banerjee, 1988). Until now, the application of the boundary
clement method (BEM) to problems of thermal stress analysis have been restricted solely
to isotropic media. In the present exposition, the BEM is applied to the thermal stress
analysis of anisotropic media of the most general form for the first time. Both the volume
integration and the particular integral-based approaches are considered. In the latter for-
mulation, the derivation of the particular integrals for the exact modeling of a quadratic
temperature distribution is presented. It is of relevance to point out in this context that
particular integrals need to be chosen judiciously for competent results. For modeling of
an arbitrary temperature distribution given at discrete points, the problem domain may be
divided into substructured regions and a quadratic temperature field can be obtained
for each sub-region through a multiple regression analysis. The present formulations are
incorporated in a gencrul purpose code using second-order isoparametric boundary
elements (and volume cells). Numerical examples are presented to illustrate the suitability
of these formulations.

ANISOTROPIC THERMOELASTICITY

The relevant equations (Nowacki, 1986), in the absence of mechanical body forces, for
three-dimensional, uncoupled. quasistatic thermoelasticity for an anisotropic medium in
terms of net temperature T(x) and displacement field w,(x) are:

AT, +W=0 )]
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where 4, are the thermal conductivities. H'is a distributed heat source. ¢, are the stiffness
coefficients and B, = %04, % being the coefficients of linear thermal expansion. For
general anisotropy. there are 21 independent stiffness coefficients ¢, and six independent
thermal coefficients x,,. For a problem with well-defined boundary conditions, eqns (1) and
(2) bear a cause-and-etfect relationship since the solution of eqn (1) provides the necessary
body force type input —f,T, in the Navier eqn (2). Our interest here lies in solving the
thermal stress analysis problem represented by (2) by the direct boundary element method.
assuming that the task of solving the causal problem of heat conduction (1) has already
been carried out. It is noted that for the case of two-dimensional heat conduction with
plane strain elasticity. the highest degree of anisotropy permissible corresponds to a material
with a plane of symmetry {Lekhnuskii. 1968). For such a material. there are 13 independent
elastic constants ¢, and four independent thermal coetlicients %, (Lekhnitskii, 1968 Pado-
van. 1986). Thus for the case of plane strain, the last of the eqns (2) is identically satisfied
and the thermal stress analysis problem will be reduced to solving two second-order sim-
ultancous differential equations corresponding to i, /. k, /= | and 2. The case of plane
stress is obtained from the plane strain analysis by replacing the material stitfness ¢, and
coctlicients of thermal expansion z, by the corresponding reduced quantitics obtained
by incorporating the assumptions of gencralized plane stress in the Duhamel-Neumann
constitutive relations.

CONVENTIONAL DIRECT BOUNDARY FLEMENT FORMULATION

By treating the quantity 8,7, inegn (2) as a body foree, the following direct boundary
integral cquation can be written, using the notation of Banerjee and Butterfickd (1981):

C () = J (¢, (O x) = F (xS (X)) ds‘(x)+j B, (x, &) B T(x) de(x)
Y [y

(ijok=1.2,in2D; = 1,2.3in 3D) 3)

where G, (x, &) are Green's functions or displacement kernels
F(x, &) are traction kernels derived using G, (x, $);
C () = 8, (Kronecker delta) for interior points and is dependent on surfuce geometry
at & for boundary points

¢G,

B, = 3.1

AV
When ¢ is a point on the boundary, the integrals containing the kernels G, and B, are
weakly singular and exist in their normal sense. while the integral containing the kernel £,
is strongly singular and cxists in the sense of its Cauchy principal value together with a free
term that is absorbed on the left-hand side. The Green's functions G, in egn (3) arc
fundamental solutions of the corresponding Navier equations of anisotropic clastostatics
for two and three dimensions and are described below.

For the two-dimensional case (Snyder and Cruse, 1975), the fundamental solutions
are given by the following closed forms:

lezzRC[“lk,B” an|+-‘lk_vB,: In Z:]. (k,j= 1,2 (4)

where the quantitics on the right of relation (4) are defined below [eqns (4.1) through (4.7)].
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The complex constants A, are given as follows:
1 hlll‘lz+b|2_blhyl
{ ”}= (l=12). (@.1)

b.-
Ay b12#1+—"‘—b:6
Hy

The complex quantities g, (k = 1, 2), together with the conjugates [, (k = 1,2). are
the roots of the following fourth-order characteristic equation in terms of reduced stiffness
coefficients b,; [eqn (13)]:

byt =201 + Qb2+ boe)u’ —2b2p+ b2 = 0. 4.2)

[t is assumed above that the g, are the roots of eqn (4.2) with positive imaginary parts.
The complex constants By, are solutions of the following eqns (4.3)-(4.6):

- = 0 .
[llB”—[-I|B,‘l+[lsz:—ﬁ:Bj:=:),?li. = -1 (4-3)
- — 6,: . /—_‘
Bll— ,|+B,3—BI:= —zni. L=y -1 (44)
AIIB/I—/TIIB/I+AIIB/Z_‘?llglz=0 (45)
1"”””—/T:ll}”+fl::B,z'—/‘71:l},: =0 (46)

[/ = 1,2 in cquations (4.3) (4.6)].
The complex vartables Z, (k = 1,2) arce delined as

Ze = (=8 )+ (x—E,). 4.7

The traction kernel £ (x. &) in eqn (3) is obtained by suitabie differentiations of G, (x, &)
and appropriate applications of the constitutive relations and the Cauchy equilibrium
equations on the boundary.

In previous applications of the boundary element method for general anisotropy in
three dimensions, Vogel and Rizzo (1973) and Wilson and Cruse (1978) used Green's
functions in the following form (Synge, 1957):

G(x.9) = ¢ K;'(0ds, (ij=1.23) (5)

YT
mix =&l Ju-

where the line integral is taken on the unit circle in the plane normal to the vector (x — &)
and passing through x, and the function

K,, l(’) = |Cukm'k’m] i l' (5.1)

Since it is not possible to cvaluate the line integral of eqn (5) in closed form for the
genceral case, numerical integration was employed. The boundary element procedure based
on the above numerically-computed Green's functions proved to be extremely time con-
suming despite improvements in which interpolation schemes are used to avoid actually
using relationship (5) at every Gauss point (Wilson and Cruse, 1978). A more efficient
approach is adopted in the present work in which the Green's functions are calculated at
the grid points and bivariate cubic spline functions are then fitted through these points for
the purposec of interpolation. The Green functions adopted in the present work can be
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expressed in terms of spherical coordinates as:

2. Sign (Re(In.(vn,(v), (i, = 1.2.3) (6)

v |

B.P)= — —
G,(r.0.¢) i
where. in the real variable formulation, the v and 5(v) are the eigenvalues and eigenvectors
of a 6 x 6 real matrix (Malen, 1971). The eigenvalues and eigenvectors occur as complex
conjugates. The ¢ derivative of G, can be expressed as

| I cn(v) cni(v) ..
G,o = = dnr Y Sign (Re(v)) [—M&p '1,(\‘)+'1.(V)~—~—8¢ ] (Gj=123 (7

v |
with a similar expression for G,, 4. These derivatives are required for the computation of
the traction kernels F;;. For the purpose of calculating interior stresses and strains, the
necessary second derivatives have also been developed.

The boundary element implementation of eqn (3) entails not only boundary discreti-
zation. but also discretization of the domain. Quadratic isoparametric elements are chosen
to this end for both two- and three-dimensional analyses. The solution of the boundary
value problem is carried out in a standard way (Cruse, 1973, 1974 Lachat and Watson,
1976; Watson, 1979 Banerjec and Butterficld, 1981) with the volume integral in egn (3)
making an additional contribution to the right-hand side vector in the system equations.

INTERIOR STRESS CALCULATION BY VOLUME INTEGRATION

The integral cquation for strain at an interior point is found analytically by substituting
eqn (3) (with ¢, = 9,) into the strain -displacement relations, where differentiation is with
respect to the field pomnt &

£, () = J (G (x. ) (x) = FL (%, Qe ()] ds(x) + ﬁ By (X, OB T(x) de(x) + S, B T(S).
8

By introducing the above equation into the Duhamel-Neumann constitutive relation by
lincar thermal expansion (viz. 6, = ¢t —f,,T), the stress integral equation is derived :

a,;(&) = ﬁ_{GZq(x. EV(x) — F (x, Sue(x)] ds(x) + J; By (x, &) T(x) do(x)+ S Bu T(E).
9

The volume integrals in eqns (8) and (9) are strongly singular and are to be interpreted in
the Cauchy principal value sense with free terms containing Ji,; and /3. An accurate
numerical integration of these volume integrals over a singular point is difficult (Banerjee
and Raveendra, 1986). Nevertheless, for an interior point coinciding with a cell node, the
singular coeflicients may be evaluated indirectly by the initial stress expansion technique
(Banerjee et al., 1989). The operation is analogous to the rigid body technique (Rizzo and
Shippy, 1968 . Watson, 1979; Banerjee and Butterficld, 1981) which employs a rigid body
solution for the indirect calculation of the singular coefficient of the F; kernel of the
boundary displacement integral equation. In the present case, an anisotropic body is
subjected to a uniform initial stress and is frec to expand, resulting in a stress-free state of
stress through the body. The resulting displacement is linear and is determined analytically.
After the coeflicients of the B, kernel related to the non-singular nodes are determined by
numerical integration. the coefficients corresponding to the singular node are found by
imposing the solution for a uniform initial stress state on the boundary integral stress
equation.
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To clarify this point. let egn (9) be written in matrix form for an interior point which

is a cell node as follows:
6 =G T-Fi+B¢° (10)
where it has been assumed that 6° is the nodal vector corresponding to the initial stress o))
defined as
a5(x) = B,T(x) (10.1)
and J; associated with the free term has been absorbed in B”.

In order to compute the singular coefficients of B” in eqn (10) corresponding to singular
nodes, six independent admissible initial stress states (or three in two dimensions) are
considered for the evaluation of six {or three) “singular node™ coefficients in each equation.
These initial stress states do not give rise to any stresses in the elastic continuum and in
effect correspond to states of free thermal expansion. Thus, for the chosen initial stress
states. eqn (10) becomes

B'" = Fi. (1

With the substitution of each independent initial stress state and corresponding dis-
placements, one singular coeflicient per equation in matrix B” can be accurately evaluated.
The inttial stress states and the resulting displacement fields are given in Tables | and 2.
The compliance cocflicients b, appearing in the displacement fields are actual material
propertics for 3D and are appropriate reduced or effective properties (Lekhnitskii, 1968)
for 2D {planc stress/strain condition). Implicit in the foregoing stutement are the following
forms of the Duhamel Neumann constitutive relation relating engineering strains to
stresses

for 31D,
< . -
Epy byo by by by b by o) (o))
£22 by bhyy by bys by B3 A2
£33 byy bys bys by T3 Ay
R . > + < > T {12)
70 symmetric biy bys by UB3] 23
713 bss bs, T3 %3
LYi2) L bes ) La12J %12
for 2D,
En by by b0 %
Eary = byy by |$922p + %2> T, (13)
V12 symmetric B, (012 %2

Table 1. Stress stutes for initial stress expansion technique in two-dimensional plane strain {plane stress) analysis

Element to Noda! values ol ussumed stress state
be determined
Stress state corresponds to ay, al; al, u, u,
1 ol { 0 0 b+ b1, hiaxa+ bhex,
2 aly 0 1 0 biaxy+ b, byxs+ v,
3 a'; 0 0 1 breX o+ theax, baeXad Yheex,




Table 2. Stress state for initial stress expansion technique in three-dimensional analysis
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DIRECT BOUNDARY ELEMENT FORMULATION USING PARTICULAR INTEGRALS

In order to use the boundary element method for solving problems involving body
forces without recourse to time-consuming volume integration, the method of particular
integrals for solving inhomogeneous differential equations has been applied (Jaswon and
Maiti. 1968 : Pape and Banerjee. 1987). In the context of thermal stress analysis of an
isotropic medium by the direct boundary element method, a particular integral-based
approach was used first by Henry and Banerjee (1988). A similar approach has been
followed here for the case of general anisotropy on a plane and in three dimensions. The
essence of the approach lies in transforming the linear, inhomogeneous differential equation
(2) into a homogeneous form by assuming that the displacement field «, can be expressed
as the sum of a complementary function, «. and an arbitrary particular integral. «*. Thus.
we have the following relations in sequence :

i, = u; +ul (14)
Comttte ;=B T, =0 15
‘-.:/kl“z.ll = 0 (‘6)

The boundary integral statement for eqn (16) is similar to eqn (3) without the volume
integral. In the discretized form of the boundary integral equations, the complementary
functions (i.c. displacements «f and tractions ) are replaced by the corresponding total
functions (u, and ¢,) minus the particular integrals («f and (7). The lincar system of equations
prior to the application of the boundary conditions may thus be written using matrix
notation as (Pape and Bancrjee, 1987):

Gr—-Fi = Gr* - I'i". (17

Nodal values of the particular integral for displacements and tractions are substituted
in eqn (17) and the system can then be solved for a set of well-posed boundary conditions.
The particular integrals which must satisfy eqn (15) are non-unique. This non-uniguencss
of the particular integrals, however, does not imply a loss of uniqueness in the total solution
since the complementary function will adjust for different particular integrals yiclding a
unique total solution for the applicd boundary conditions. Nevertheless, certain particular
integrals are numerically more stable than others in the boundary element implementation.
As a general guideline for polynomial-type body forces, the particular integrals for stresses
satisfying equilibrium and compatibility conditions should be complete polynomials of an
order higher than the applied body force.

The particular integrals derived in the present work assume a quadratic temperature
distribution. For an arbitruary temperature distribution given at discrete points, the best
quadratic fit in the least-squares error sense is gencrated through a multiple regression
analysis. Since the applied temperatures are modeled region by region, it is possible to
account for temperature discontinuitics across an interface of two or more regions. The
application of the present particulur integral-based approach is thus quite general and the
accuracy of the results is governed solely by the degree of approximation in the modcling
of the temperature field.

An orderly procedure will now be outlined leading to the particular integrals due to a
quadratic temperature distribution in the two-dimensional case. An analogous procedure
of derivation may be followed for the three-dimensional analysis.

Let us start with assuming the temperature distribution on the planc to be

T(X,.X3) = to+ 1, X, 12X+ 1 X7+ 12X, X2+ 1:x3 (18)

where the coeflicients £,.7;,....¢;, are obtained by a multiple regression analysis from
temperature data given at discrete points across a sub-region.
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Upon inspection of the governing equations, quadratic polynomials are assumed for
the particular integrals for stress. The most suitable forms of particular integrals were found
to be:

0%, = X, +raXi+rix, X, (19.1)
0% = FyXa X X241 X3 (19.2)
082 = PoX| + Py X+ T XT 470X, X+ 7 X3 (19.3)

where the 11 unknown coefficients need to be determined non-trivially. The particular
integrals (19.1)-(19.3) should satisfy the following equations of equilibrium:

Oyt 02= (20.1)

G2 +0:2:=0. (20.2)

Upon substituting relations (19.1)-(19.3) in eqns (20.1)-(20.2). we get the following six
homogencous relations in the 11 unknown stress coeflicients:

ri+ry=0 2N
2rs4r,,=0 (22)
ry+2r, =0 R))]
rytry =10 (24)
2ry+rs =0 (25)
rio+2r, =0. (20)

To obtain the five additional equations for a solution of r, (i = 1-11), the Duhamel -
Neumann stress-strain relations (13) will be applied in conjunction with the strain-dis-
placement relations of lincar two-dimensional elasticity.

Incorporating the linear strain-displacement relations, the Duhamel-Neumann consti-
tutive relation (13) becomes

ey =u =bno, +bnont+bon+2, T (27.1)
€1y = Uy =b30,,+b2:02+b260,2+ 25T (27.2)
Vi2 = Upa4+Us ) = 0160+ D202+ beeo i1+ 2y, T. (27.3)

On substituting the stresses (19.1)-(19.3) and the temperature field (18) in eqns (27.1)-
(27.3) above, we have

wh = po"+pi 0+ p8 s+ pxd 4+ p e x4 PR (28.1)
why = pi + 0 +p P x4 pid + o+ p R (28.2)
w3+, = p 4+ piOx +p x4 Pt 4 pi%e oy + piEad (28.3)
where
I’“) = 11:’0 (291)
PV =bar b+t (29.2)

P(:” = h12r4+hl(vr8+1url (293)
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p(li)‘ = by ry+biers+auty (29.4)
pUs = burs+bars+berig+at; (29.5)
Pt =biare+beri + 24000 (29.6)

In relations (29.1»-(29.6) above, i = 1. 2 and 6, b, = b;; and %46 = %;3.
Integration of eqn (28.1) with respect to x, and of eqn (28.2) with respect to x, yields
the following expressions for the displacements :

W = pilx 4+ 1+ p X x4 + i 4 px x4 1 (x2) (30.1)

|t 2

W = piPxa+ P+ p P g+ P+ i+ p g + L (x) (30.2)
where I,(x,) and 7.(x,) are constants of integration.
Substituting expressions given by (30.1) and (30.2) in eqn (28.3) and rearranging, we

obtain:

(P =P+ (P = )+ (N = pIEXT + P52 + 294 — pife x;
+p A=+ L+ L, —p = 0. (31)

For relation (31) to be an identity, we must have:

P =p" =0 (32)

P =p =0 (33)
P-p =0 (34)
2p88+2p\ 0 =pi = 0 3%
PI-pE =0 (36)

Lyt b, =p =0. 37

Equation (37) above can be satisfied if 7, and I, are chosen to be the following :

1 = 4piPxy = dayatgx, (38.1)
Iy = 4plPx, = jaat0x,. (38.2)

Using relations (29.1)~(29.6) in eqns (32)-(36), we get five additional equations for the
unknown stress cocficients r, (i = 1-11). Together with the six equations (21)-(26), we thus
have 11 equations for solving 11 quantities r,. It may be noted that the coefficients r,, being
dependent on the elastic and thermal properties of the given material and the nature of the
applied temperature distribution, are evaluated only once for each region. Once the r,
cocflicients are computed, the displacement particular integrals, uf, arc given by relations
(30.1) and (30.2), and the traction particular integrals, ¢, by the following combinations of
stresses assumed initially in relations (19.1)-(19.3):

5 =afn +afin, (39.1)

-~
)
|

= a‘l’:n|+a§3n2 (39.2)

where n, and n, are Cartesian components of the unit boundary normal.
The systematic procedure outlined above by relations (19.1) through (39.2) can easily
be extended to the derivation of three-dimensional particular integrals and will not be
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repeated here. We indicate below only the assumed temperature distribution T(x,. x, x,)
and the forms of stress-particular integrals ¢%:

T(X\ X0 X)) = g+ 00X F X+ 13X+ 8 XT A+ £ X5 £33X5 + 12302,

+Hepx s+ 0x: (40)

O = P X X X XX X CINY]
68y = r Xy e X3+ XoX 17X Xs (41.2)
O8y = FaXa+rgX 47 XX 72X 0 (41.3)
o8 =P XN, +r]5_\'§+r”..\‘§+rl7.‘c3x_‘ F X XX X 41.4)
Oy = PagX  F 7 Ny H e X ] Fr a3 X3 XaX 1+ 725X X3+ Fa6X, X3 (41.5)
082 = FarXy Frax X P 0 X] 730 X3 7y X0 X1+ 71206 X 1+ 7330, X, (41.6)

NUMERICAL EXAMPLES

Constrained compasite plate under discontinuous temperature field

Two plates of dimensions { x d are bonded together by a weld of thickness p. as shown
in Fig. {. Region (2) is raised to a temperature T, while regions (1) and (3) are held constant
at the mmtial temperature. Under a condition of plane stress, the reduced compliance
cocflicients 8. 8,., 8,, and B, arc used for regions (1) and (3), and b, . b1, b2 and b,
are used for region (2). Furthermore, tet the reduced thermal cocflicients of lincar expansion
of region (2) be denoted as a0 25, and oy, U all edges of the plate AFGD are supported
on rollers to restrain movement in a direction normal to cach edge, it may be shown that
the following clastic solutions hold (assuming the origin of the coordinate system to be at
AL with axis v, parallel to side AF):

0 <y, <2U4p:

e (@2.1)

+ Element edge
{0,4) (Ld) (+p,d) © Mid-point (2+pd)
D N _ _CMH N " G
- e e - i 5
£ - 5
d & !
+ -+ i
[+ (2 °®
L i
i 4 !
R+ (1 J X YoX 3 %.5
I |
¢ o i
3 i
® ¢ ;
$ 3 '
o + o o &t o + o L
A BNE F
(0,0 {0 (+p,0) (2 +p.0)

Fig. |. Three-region boundary element model of composite plate.
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0<x, <ll+p<x,€£2U+p:

Csr = Bt:a
2= B, i
l<x, <l+p:
1
O3 = —g:(blzo'n'*'i:zTo)
0<x;<2A+p, 0K x, € d:
Cy2 =0
OSK[S[
B:s
y —(BH"“B;;)UH"I
ISy, gl+p

0<;, € U+p, 0K x2 < d:

Iy == 0.
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(42.3)

(42.4)

(42.5)

42.7)

(42.8)

This problem was solved using the particular integral-based boundary element formulation,

The following data were used :

B, =0.763, B, =1.692, B,,= 0290
by =16, by=13, b,=—05
o = 0.001, ay, =00015, a,,=00
[=50, p=5 d=50
T, = 100.

43
(43.2)
(43.3)
(43.4)
(43.5)

A three-region boundary clement mesh employing three-noded quadratic elements is shown
in Fig. 1. As shown in Table 3. the results obtained from the boundary element analysis
are in excellent agreement with the analytical solutions given by relations (42.1)-(42.8).

Tuble 3. Comparison of BEM results with analytical solutions for a composite plate

Point oy Gas
X, X BEM Analytical BEM Analytical BEM Analytical
25. 25 —0.0096 —-0.0096 - 0.00036 —0.00036 —-0.1804 —0.1802
52.5 25 —0.0096 —0.0096 -0.1192 -0.1191 0.0000 0
80 25 -0.0096 —0.0096 -0.00036  —0.00036 0.1804 0.1802
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Freely expanding composite plate under discontinuous temperature field

From the plate considered in the previous example, the geometric constraints are
removed to allow it to deform freely, and the particular integral-based boundary element
analysis is carried out. Rigid body movements are prevented by fixing point R (Fig. 1) in
both the x,- and x.- directions, and fixing point S (Fig. 1) in the x.-direction only. The
deformed shape of the plate analyzed using the boundary element mesh in Fig. 1 is shown
in Fig. 2. As the weld expands. regions (1) and (3) are subject to compression in the x,-
direction and mild tension in the x.-direction. while region (2} is subject to compression in
both the x,- and x.-directions. The variation of stresses ¢, and & ., along the mid-section
parallel to the x,-direction is shown in Fig. 3. [Point P represents the position of the interface
between regions (1) and (3).] Stresses are plotted for one half of the plate (from R to O in
Fig. 1). The dominant stress - is shown in Fig. 4 through the mid-section MN parallel to
the x,-direction. The effect of changing the specially orthotropic properties to general
orthotropy has also been studied. In the matenal property data in (43.1)-(43.3), the major
principal axis is assumed to be parallel to the x-direction (0 = 07). The major principal
axes in regions (1) and (3) are gradually rotated counterclockwise to a position 90" to the
x-direction (# = 90°). The variations of stresses with respect to the orientation of the
principal material direction at an interfacial point P are shown in Fig. 5. As expected. there
is a relaxation of a,, at P because of weakening of regions (1) and (3) in the x,-direction,
and a simultancous build-up of g, both to the left and the right of P. The shear stress o,
(Fig. 5) vanishes in the initial and final specially orthotropic positions, and rcaches a
maximum value in between these positions.

Multi-luyer cantilever under linear temperature distribution

A three-layer anisotropic cantilever is analyzed for a lincar temperature distribution
through the thickness by the two-dimensional (planc stress) particular integral-based bound-
ary clement formulation. Each orthotropic layer is modeled as a substructured region in
the boundary clement analysis. A typical boundary clement mesh with 24 quadratic clements
per region is shown in Fig. 6. Regions ABQP and RSCD are assigned clastic propertics
identical to those in regions (1) and (3) in the first example. In addition, the following
cocflicients of lincar thermal expansion are assumed :

2, = 0.001, 2, =0.002, %, =0.0. (44.1)

The clastic and thermal properties of the region PQSR are identical to those of the

————— Initial configuration
Deformed configuration

Fig. 2. Thermally loaded composite plate undergoing free expansion.
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weld [region (2)] in the first example. With the x,- and x;-axes oriented along the sides AB
and AD, respectively (Fig. 6), the following temperature distribution is assigned :

T=0.0lx,. (44.2)

In general, it is also assumed that the major principal axes in the bottom and top layers
ABQP and RSCD are oriented at 0"-clockwise and 0 '-counterclockwise respectively with
respect to the xj-direction; the middle layer is, however, specially orthotropic with the
major principal axis aligned parallel to the x,-axis.

In Fig. 7, the results of the convergence study of the free-end deflection with respect
to the number of elements per region are presented for three different cases of fiber

M

5g.ea

20.09 |-

Distance from side AF

i Ll —t —

1.
N . oee -.01Q -.a2e -.@3Q =.24a -.0s5e ~.262
o

Fig. 4. Variation of ¢,, along the mid-section MN.

SAS 27:13-1
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Fig. S. Variations of absolute values of stresses with fiber orientation.

orientation (0 =0°, 45" and 90) and distinct patterns of convergence are observed. The
cflect of fiber orientation on the free-end deflection (i.e. overall beam stitfness) is shown in
Fig. 8 where a rather abrupt loosening of the cantilever stiffness is noticed for an orientation
roughly given by 0 = 45 . In Fig. 9 (where the dotted hines represent the inter-layer bound-
aries), mid-span through-the-depth bending stresses are presented for 0 = 45 and 90 . The
bending stresses for 0 = 07 are negligible as compared to those for 6 = 45" and 90" and
hence are not shown. It is of interest to note that bending stresses vary in a piccewise lincar
fashion through the depth as would normally be predicted by a laminate-beam theory.

Compuarison between an anisotropic cube and a square plate using particular integrals
Because of the rather extensive algebra involved in developing the expressions of the

three-dimensional particular integrals, it is essenttal to carcfully check the correctness of

these integrals. A simple way of doing so is to develop test cases for comparing plane strain

+ Element edge
Q Mid-paint

D c
R +~———t— Lct‘,ﬁ‘,ﬁ*vLA—%s
P g—o—t———o ——t———+—o0—+ >——t—o—+ q

o MDD GG
B

Fig. 6. Boundary element model of three-layer cantilever.
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analysis with the corresponding three-dimensional analysis where plane strain behavior is
enforced by restricting any movement in the x,-, x;- or x-dircctions. As an exmple, the
following material data are assumed pertaining to a fictitious monoclinic material with 13
independent elastic constants :

bii=16. by= =05 h,=—03 b,=01 (45.1)
h_): = 1.3. /’2‘ = —0.4. hlb = 0.'3 (45.2)
b)] = lo. b)(, =0.16 (453)
by =10, by =0. (45.4)
.80Q
.60 -
g
g
b
< .seet
&
.2eQ
.cea i L 1 I L
.09 1S5.eQ 30.29 45.20 63.Q 7’5.¢0 SQ0.0
@ (Degrees)

Fig. 8. Variation of deflection with fiber orientation.
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Fig. 9. Mid-span bending stresses through cantilever depth.
b55 = ].0 (45.5)
heo = 2.8. (45.6)
The angle of inclination of the major material axis with the vy -direction = 30
Ay =l3:=1‘_‘=0.00|, 135=1|;=1|1=0.(). (457).(458)

The material described above is respectively in the form of a unit square plate and a unit

cube for two- and three-dimensional analysis.
The following temperature distribution is now assumed:

T= l+‘\'l.

VV

Fig. 10. Unit cube with four quadrilateral elements per face.

(45.9)
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Table 4. Comparison of 2D and 3D analyses using particular

integrals
Displacement BEM (2D} BEM (3D)
u, 0.8713x 107 0.8715x10°*
us 0.2079 x 10+ 0.2094 x 10-*

Table 5. Comparison of 2D and 3D analyses using volume

integration
Displacement BEM (2D) BEM (3D)
u, 0.6982x 10~ 0.6977x 10-*
. 0.6488 x [0~* 0.6490 x 10~*

The two-dimensional boundary element mesh consists of two quadratic elements per
side of the unit square plate. For three-dimensional analysis, the boundary element model
consisting of four quadratic elements per face of the unit cube is used, as shown in Fig. 10.
Displacements are compared at the center (0.5, 0.5) of the square plate with those at the
center (0.5, 0.5, 0.5) of the cube in Table 4 and excellent agreement s observed.

Compuarison between an anisotropic cube and a square plate by volume integration

The unit square plate and the cube deseribed in the previous example are subject to a
uniform temperature [i.c. x, = 0 ineqn (45.9)] of unity and solved by volume integration
by considering one cight-noded plinar cell (with one three-noded quadratic clement per
side) and one 20-noded three-dimensional cell (with one cight-noded quadrilateral element
per face). The results (at the centers of the plate and the cube) of the two- and three-
dimensional analyses match extremely well, as apparent from Table S.

CONCLUSIONS

New boundary element formulations are introduced for the elastic analysis of two-
and three-dimensional anisotropic bodics subjected to thermal body forces. The body
force point-of-view of the temperature gradients is adopted, and volume integration and
particular integral-based approaches are described. Effective particular integrals are pre-
sented for a quadratic temperature distribution on planc as well as in three dimensions. A
systematic procedure, extremely useful in the derivation of the arbitrary particular integrals,
has been outlined. For an arbitrary temperature distribution in a sub-domain, either the
method of volume integration or the more efficient particular integral-based approach may
be followed ; in the latter case, by fitting a quadratic polynomial to the given temperature
distribution via a multi-regression analysis. The formulations presented have been
implemented in a general purpose multi-region boundary element code, namely GPBEST,
and validated with examples.
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